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Organic–inorganic hybrid perovskite semiconductors pos-
sessing superior optoelectronic properties (e.g. long carrier dif-
fusion  lengths,  high  optical  absorption  coefficient,  low  ex-
citon  binding  energy,  and  high  defect  tolerance)  are  attract-
ing  serious  attention.  The  certified  power  conversion  effi-
ciency (PCE) for single-junction perovskite solar cells have ex-
ceeded  25%[1, 2].  As  a  very  promising  PCE-enhancement
strategy, tandem structure made by stacking a perovskite cell
on a market-dominant silicon cell can yield much higher PCEs
beyond the Shockley-Queisser limit of single-junction devices
without  adding  substantial  cost[3].  To  satisfy  current-match-
ing  in  tandem  configuration,  the  top  perovskite  cell  requires
an ideal bandgap of ~1.7 eV rather than the ones (~1.5–1.6 eV)
typically  used  for  highly  efficient  single-junction  perovskite
devices given that the bottom silicon cell holds a bandgap of
1.12  eV[4].  Such  wide-bandgap  perovskites  achieved  through
I/Br alloying usually suffer from photoinduced phase segrega-
tion  and  relatively  low  radiative  efficiency,  which  inevitably
result  in  large  open-circuit  voltage  (Voc)  deficits[5, 6].  Several
strategies  like  adjusting  perovskite  composition[7, 8],  additive
engineering[9, 10],  and  upper  surface  passivation[11, 12] have
been  utilized  to  stabilize  these  wide-bandgap  perovskites
and improve film quality to reduce Voc losses. The reported pe-
rovskite/silicon  tandem  devices  suffer  from  low Voc (<1.9  V)
and PCEs  (≤28%)[13].  There  is  still  a  large room for  enhancing
PCEs  given  that  the  predicted  PCE  limit  is  beyond  30%  for
this tandem technology[14].

Recently,  Albrecht et  al.  demonstrated  an  effective
strategy  to  improve Voc and  PCE  simultaneously  and  made
perovskite/silicon  tandem  solar  cells  with  a  certified  PCE  of
29.15%[15].  To  be  specific,  a  self-assembled,  methyl-substi-
tuted  carbazole  (Me-4PACz)  monolayer  was  used  as  the
hole-transport  layer  (Fig.  1(a))  instead  of  common  PTAA.  The
chemical  structures  for  PTAA  and  Me-4PACz  is  depicted  in
Figs.  1(b) and 1(c).  The  1.68  eV  perovskite  film  (Cs0.05(FA0.77-
MA0.23)0.95Pb(I0.77Br0.23)3)  deposited  on  ITO/PTAA  exhibited  an
obvious  phase  segregation  with  a  red  shift  of  photolumines-
cence  (PL)  peak  (Fig.  1(b)),  whereas  the  emission  peak  posi-
tion kept nearly stable on ITO/Me-4PACz (Fig. 1(c)). Me-4PACz
monolayer  not  only  minimized  nonradiative  interface  recom-
bination  losses via surface  passivation  according  to  quasi-

Fermi level splitting (QFLS) measurement, but also enabled ul-
trafast hole extraction evidenced by charge carrier lifetime ana-
lyses,  thus  leading  to  effective  suppression  of photoinduced
phase  segregation.  The  corresponding  single-junction  device
with a structure of  ITO/Me-4PACz/perovskite/LiF/C60/SnO2/Ag
offered a Voc of  1.22 V and a PCE of  20.8%. Except the role of
phase stabilization, the fast charge extraction paired with effi-
cient surface passivation significantly reduces the diode idea-
lity  factor  of  Me-4PACz-based  solar  cells  to  1.26  (1.55  for
PTAA-based  devices),  accordingly  contributing  to  a  fill  factor
(FF)  of  84%.  Further  FF  analysis  indicated  the  formation  of  a
lossless  interface  when  inserting  Me-4PACz  monolayer
between ITO and perovskite (Fig. 1(d)).

Subsequently, such efficient single-junction cells were em-
ployed to construct monolithic perovskite/silicon tandem sol-
ar cells (Fig. 1(e)). The best tandem device with Me-4PACz un-
der  forward  scan  gave  a Voc of  1.90  V,  an  FF  of  79.52%,  a
short-circuit  current  density  (Jsc)  of  19.26  mA/cm2,  and  a  PCE
of  29.05%,  yielding  a  stabilized  PCE  of  29.15%  at  the  maxim-
um  power  output,  which  notably  outperformed  PTAA  coun-
terpart ( Voc = 1.85 V, FF = 75.61%, Jsc = 19.19 mA/cm2,  PCE =
26.79%) (Fig. 1(f)). The impressive PCE of 29.15% is much high-
er  than  that  for  previous  monolithic  perovskite/silicon  tan-
dem  devices[12, 13, 16, 17].  Strikingly,  the  tandem  device  with
Me-4PACz delivered a maximum Voc of 1.92 V, where the con-
tribution of the perovskite subcell reached 1.2 V in considera-
tion  of  a Voc of  ~715  mV  from  silicon  subcell  under  the
filtered illumination. Additionally,  the efficiency of Me-4PACz-
based  tandem  cells  without  encapsulation  just  degraded  by
4.5%  after  300  h  operation  in  air.  More  encouragingly,  fitting
results  indicated that a 32.4% PCE can be achieved from per-
ovskite/silicon tandem cells.

The  performance  of  monolithic  perovskite/silicon  tan-
dem  cells  depends  on  not  only  perovskite  absorber  but  also
the  important  yet  neglected  charge-transport  layers,  which
can affect perovskite phase stability, charge extraction, and in-
terface  recombination  losses[18].  Despite  breaking  theoretical
efficiency  limit  (29.1%)  of  silicon  cells[19],  tandem  configura-
tion  may  realize  >32%  PCE  through  further  optimization.
More efforts should focus on charge transport losses and cur-
rent-matching conditions as well as Voc deficit. 
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Fig. 1. (Color online) (a) Schematic diagram for PL measurement of perovskite films deposited on ITO substrates with different hole-transport lay-
ers. Time-dependent PL spectra (inset: molecular structure) for 1.68 eV perovskite films coated on (b) ITO/PTAA or (c) ITO/Me-4PACz  substrates.
(d) FF and its losses in PTAA and Me-4PACz based single-junction solar cells. (e) Schematic illustration for monolithic perovskite/silicon tandem
device.  (f) J–V curves for  champion tandem solar  cells  with PTAA (in-house measurement)  or  Me-4PACz (certified at  Fraunhofer).  Reproduced
with permission[15], Copyright 2020, American Association for the Advancement of Science.
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